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Abstract. The mode coupling equations describing the ideal glass transition in simple liquids 
are generalised to treat binary mixtures. These equations are solved numerically to obtain 
the phase diagram, the glass order parameters, and the exponents ruling the long time 
dynamics of a soft sphere model for which numerical simulation results are available. 

1. Introduction 

The mode coupling theory (MCT) of the glass transition [l, 21 developed in the past few 
years provides a detailed picture of the microscopic dynamics in supercooled liquids: in 
its simplest version, the MCT describes the glass transition as a bifurcation from ergodic 
to non-ergodic behaviour below a critical temperature T,. Near T,, the dynamics of the 
liquid ( T  > T,) and of the glass ( T  < TC) for mesoscopic times is predicted to obey scaling 
laws with non-universal (system dependent) exponents. These predictions have been 
used to analyse experimental data for several systems (fused salts, organic and polymeric 
glasses) yielding at least a qualitative agreement [3-61. However, MCT applies strictly 
speaking only to simple liquids, for which the available data on the glass transition come 
exclusively from numerical simulations. MCT has in particular been used to study the 
glass transition in hard spheres [2,7] and Lennard-Jones [8,9] systems. The numerical 
simulation of the glass transition in such one-component systems is, however, plagued 
by the phenomenon of crystalline nucleation, which makes the very long runs needed 
for a precise characterisation of the transition impossible. In this paper, we shall apply 
MCT to a simple binary mixture for which this phenomenon can be avoided [lo]; this 
model has been extensively studied [ 10-141 by molecular dynamics (MD) simulations, 
and its glass transition has been well characterised [13, 141. It consists of a mixture of 
soft spheres with different diameters interacting via an inverse power potential: 

U i i ( Y )  = &(otj/r)'* (1) 

where i, j = 1 , 2  refer to the different species and the diameters are additive, i.e. oI2 = 
;(all + 02*). We shall be particularly interested in the case studied in [13, 141, i.e. ' an 
equimolar mixture (xl = x 2  = 0.5) with a22 = 1.2. 

t Permanent address: Ecole Normale Suptrieure de Lyon, 69364 Lyon Ctdex 07, France. 
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Due to the scaling properties of the potential ( l) ,  the thermodynamic state of the 
mixture can be characterised by two parameters only: we shall use here the composition 
x = N 2 / N  and the reduced coupling parameter which includes the effect of both the 
temperature T and the density n [ 101: 

= n ~ & ( & / k ~ T ) ' / ~  (2) 
with u2ff = X:C& + + x i & .  In the following section, we present the gener- 
alisation of the mode coupling equations to binary mixtures. Numerical results for the 
soft spheres model are described in section 3. 

2. Mode coupling equations for binary mixtures 

Like in the one-component case [2], the MCT focuses on the relaxation of density 
fluctuations; these fluctuations are now described for each wavevector q by a 2 x 2 
matrixF(q, t),withmatrixelementsF,(q, t )  = (l/N)(p: ( q ,  t )p , (q ,  0)), p l ( q ,  t )  referring 
to the Fourier components of the density. For t = 0, F reduces to the structure factor 
matrix S(q) .  The time evolution of F is described by the generalised Langevin equation 
~ 5 1  

F(q, t )  + AX2(q)F(q. t )  + ds  M(q, t - s)F(q, S) = 0 (3) jo' 
where 

Q t ( q )  = ~2kBT(x~/mt>sr~[S-'l~,(~) 

(summation over repeated indexes is implicit throughout the paper). 
The memory matrix M is separated into a regular term which is irrelevant here and 

a mode coupling term describing the decay of density fluctuations into pairs of them, 
quadratic in the F,,. This term reads explicitly: 

where 

' E q ( q >  k,  = (4 - k, (q/q)si&ctq(q - k,  + * (q/q)61,c!E(k) + xtqcf?4(k, 4 - k,  ( 5 )  
and the direct correlation functions cq are given by 

ct,(q) = 6 t , / X r  - [S-",. (6) 

In the liquid state, F(q, t = + =) = 0, i.e. one has an ergodic behaviour. The ideal glass 
transition corresponds to the possibility of a non-zero limit for F(q, t ) ,  F(q), for infinite 
times. If such a limit exists, equations (2) and (4) yield 

F(q) = (1 /q2 )S(q )N(q )  ( S ( q )  - F(q)) (7) 

This non-linear equation can be solved iteratively in order to obtain the frozen form 
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factors (or non-ergodicity parameters) F, (q ) ,  i.e. the order parameter for the glass 
transition. 

Equation (7) has two important properties: first of all, it can be shown that when the 
two species are identical, its resolution is equivalent to solving simultaneously the 
equations for the total density and the tagged particle density correlators given in [2]. 
The second and most important property is that (7) is independent of the particle masses 
(this follows trivially from (4) and (8)). This means that the bifurcation from ergodic to 
non-ergodic behaviour depends only on static quantities like the structure factors. The 
particle masses influence only the short-time dynamics, but not the value of the critical 
density or of the exponents determining the long-time behaviour. 

The general properties of (7) have been studied in detail in [16] for a one-component 
system. This analysis can be extended to the mixture case with the following results. The 
non-ergodicity parameters are obtained by solving iteratively 

F("+')(q) = [q21 + S(q)N,(F("), F("))]-'S(q)N,(F("', F("))S(q) (9) 

where the quadratic dependence of N(q) on F has been explicitly indicated. The con- 
vergence of these iterations is ruled by the spectrum of a stability matrix C, which can 
be defined through its action on a vector SF = ( 6 F l l ( q ) ,  6FL2(q ) ,  6F2,(q)) 

(in this formula and the following one, the dependence on q has been indicated only by 
a subscript). 

Unlike in the one-component case [17], no a priori statement can so far be made 
concerning the spectrum of the operator C. However, our numerical calculations do not 
show any difference between this and the one-component case. We must therefore 
consider the existence of a non-degenerate largest eigenvalue for C, Eo,  whose approach 
to unity when the coupling is decreased yields the transition point. The scenario for the 
transition is then very similar to the one-component case: for large couplings, (r > TJ, 
0 < Eo < 1 and the iteration (9) converges to a stable fixed point with F(q) # 0. The 
transition point is characterised by Eo approaching unity according to 

(1 - Eo)2 = AOE + O ( E * )  (11) 

with E = (r - Tc)/Tc. If H ,  is an eigenvector of C associated with Eo,  the non-ergodicity 
parameter near Tc behaves according to 

Finally, the time evolution of the correlators in the @-relaxation region is determined by 
the exponent parameter A: 

/ r m  \ 
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Figure 1. (a) The variation of the critical density with composition for a fixed diameter ratio 
(u2/u,  = 1.2). The points indicate the reduced glass transition density n(x, a:l + x2az2) 
(&/T)Il4 forvariousconcentrations. ( b )  The variationofthe critical densitywith the diameter 
ratio for a fixed concentration ( x 2  = 0.5). 

A, is an eigenvector of the transposed operator C associated with the eigenvalue Eo. 
From A one obtains two exponents a ,  b ,  0 < a < 1/2,0 < b < 1: 

r ( i  - a )2 / r ( l  - 2a) = A = r ( i  + b)2/ r ( i  + 2b). 

The@-relaxationoccursonatimescale U;', withw, = 
behave according to 

On thisscale, thecorrelators 

F,(t) = F;(t) + &'/2Hqf*(w,t) E + O k .  (14) 
For larger times, w;' -=zZ t -=zZ ( U : ) - ' ,  with w i  = E Y ,  y = 1/2a + 1/2b one enters the 
&-relaxation regime in the liquid, while the structure remains frozen in the glass. The 
exponent y characterises the divergence predicted for the transport coefficients when 
the transition is approached from the liquid side. 

All these properties follow directly from [ 16, 171, to which the reader is referred for 
a detailed discussion. Finally, the equations that determine the long-time limits for the 
tagged particle density correlators (i.e. the Lamb-Mossbauer factors) can be found in 
[I81 * 

3. Numerical results for soft spheres mixtures 

We have solved equations (7) and (13) for several values of the parameters characterising 
the mixture (composition and diameter ratio). If the triplet correlations are neglected 
(a reasonable approximation in view of the results of [7]), the only necessary inputs are 
the structure factors. These were calculated using the Rogers-Young integral equations 
[19], which have been shown to reproduce very accurately the simulation results [lo]. 

Figures l(a) and (b )  show respectively the phase diagrams obtained by varying the 
concentration for afixed diameter ratio (a2/o, = 1.2) and for a fixed concentration (x2 = 
0.5, equimolar mixture) with a variable diameter ratio. The ordinate axis is in both cases 
n(xla:l + ~ ~ 0 : ~ )  (&/T)lI4, so identical values are obtained for x = 1 (pure big spheres) 
and x = 0 (small spheres) in figure l(a). From figure l(a) the reduced critical density is 
seen to be fairly insensitive to the composition. A stronger variation is observed in figure 
l(b),  which shows in particular the destabilising influence of the small spheres on the 
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glassy structure [ 181. The case of a very small diameter ratio ( u1/u2 < 0.15) yields specific 
problems which have been considered in [18] and will not be discussed here. 

The various quantities defined in section 2 (form factors F(q), exponent parameter 
A., eigenvector H ( q )  and the corresponding spatial Fourier transforms F(r) and H ( r ) )  
have been calculated for different concentrations and diameter ratios. The results appear 
to be quite insensitive to these parameters, so in the following we shall restrict ourselves 
to the case u2/u1 = 1.2, x2  = x1 = 0.5. Moreover, they are qualitatively very similar to 
the results obtained in [7] for a one-component hard sphere system, to which the reader 
is referred for a more detailed discussion. For these parameters, the glass transition is 
predicted to occur for a coupling r = 1.32. As usual [7,8], this value underestimates the 
simulation result r = 1.46 [13,14] by about 10% in density. Such an underestimate can 
be expected from the basic assumptions of the simple MCT used here, which strongly 
restricts the possible decay channelsfor density fluctuations. The error is not dramatically 
large, but it will restrict our comparison with simulation results to qualitative aspects. 

The exponent parameter A is found to be A = 0.73, yielding exponents a = 0.31, b = 
0.59, y = 2.46. The power law curves fitted to the simulation results [ 12,141 usually yield 
y -‘I 2, but the difference can hardly be considered significant in view of the rather 
restricted range of the data [7]. Note that the value of A is very close to the results 
obtained for the one-component systems [7, 91 or for other diameter ratios (e.g. A. = 
0.72 for u1/u2 = 0.55, A = 0.67 for crl/u2 = 0.15). More interesting is the general aspect 
of the non-ergodicity parameter in r-space, F(r) ,  illustrated on figure 2 for the matrix 
element F,, at the transition point. F(r) characterises the frozen structure of the glass. 
It is clear from figure 2 that the MCT overestimates this structure, the reasons for this 
discrepancy being, most probably, the same as those that yield an underestimate of the 
critical density. However, qualitative features of F(r )  are correctly reproduced: in 
particular, the oscillations are in phase with those of g ( r )  and the two functions differ 
only on a rather restricted range (two to three neighbour shells). This feature is illustrated 
by the plot of H l l ( r )  (figure 3), whose range characterises the spatial extent of the /3- 
relaxation (14) (see [7]). 

Finally, figure 4 shows the number-number and concentration-concentration form 
factors, normalised by their t = 0 value, i.e. FNN(q)/SNN(q) and Fcc(q)/Sc-(q). Since 
the diameter ratio is close to 1, it seems reasonable to assume (in the spirit of the 
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matrix C at the transition point. ameters FIZ-dq)IS.d9) and FCc(q)l&(q) for 

simplified model of [l, 21 and of the effective liquid representation of [lo]) that the 
transition is driven by the number-number correlations with wavevector qo which occurs 
at the peak of SNN.  The conclusions of [20] thus suggest that the time relaxation of the 
small-q concentration (or charge) fluctuations, which do not decrease much below their 
1 = 0 value, could have a spectrum presenting a /%relaxation peak. 

4. Conclusions 

We have investigated the predictions of a simple mode coupling theory for the glass 
transition of a simple binary alloy. An important prediction of the theory is that the 
transition point and the associated critical behaviour are independent of the mass ratio 
between the two species. This is in agreement with the numerical simulation results 
[lo, 141 and indicates that the glass transition, though a dynamical one (in the sense that 
it corresponds to a divergence in transport coefficients), originates purely in equilibrium 
properties of the liquid. The agreement of MCT with the molecular dynamics results is 
reasonable, the origin of the discrepancy being qualitatively understood [21]. It should 
be noted that the properties investigated here (critical density, the influence of the mass 
ratio and the ergodicity parameters) are quite different and complementary to the 
predictions that have been compared previously to neutron scattering data [3]. Further 
numerical simulations would be useful in order to test the scaling laws predicted by MCT 
near the glass transition, in particular in the /3-relaxation region. 
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